Li LiAssociate Professor
Office: 350 MSC (formerly SEB) Phone: 248-370-3447 Fax: 248-370-4184 E-mail: li2345@oakland.edu Mailing address:Department of Mathematics and Statistics Oakland University Rochester, Michigan 48309 |

For the information of the classes I am teaching, please log in Moodle. Here is a list of some Courses I taught.

** Preprint**

K. Lee, L. Li, M. Mills, R. Schiffler, A. Seceleanu, Frieze varieties : A characterization of the finite-tame-wild trichotomy for acyclic quivers, submitted.

L. Li, J. Mixco, B. Ransingh, A. K. Srivastava, An approach toward supersymmetric cluster algebras, submitted.

** Research papers**

21. K. Sweet, L.Li, E. Cheng, L. Liptak, D. E. Steffy, A complete classification of which $(n,k)$-star graphs are Cayley graphs, Graphs and Combinatorics. 34 (2018), no.1, 241--260.

20. M. de Cataldo, T. Haines, L. Li, Frobenius semisimplicity for convolution morphisms, Mathematische Zeitschrift, 289 (2018), no. 1-2, 119--169. (The arxiv version.)

19. K. Lee, L. Li, N. Loehr, A Combinatorial Approach to the Symmetry of $q,t$-Catalan Numbers, SIAM J. Discrete Math (SIDMA). 32 (2018) no.1, 191--232 (The Sage code that helps with the computation.)

18. K. Lee, L. Li, B. Nguyen, New Combinatorial Formulas for Cluster Monomials of Type A Quivers, Electronic Journal of Combinatorics 24(2) (2017), #P2.42.

17. E. Cheng, L. Li, L. Liptak, S. Shim, D. E. Steffy, On the Problem of Determining which (n, k)-Star Graphs are Cayley Graphs, Graphs and Combinatorics, 33 (2017), no. 1, 85-102.

16. K. Lee, L. Li, D. Rupel, A. Zelevinsky, The existence of greedy bases in rank 2 quantum cluster algebras, Advances in Mathematics, 300 (2016), 360-389.

15. K. Lee, L. Li, M. Mills, A Combinatorial Formula for Certain Elements of Upper Cluster Algebras, Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 11 (2015), 049, 24 pages.

14. K. Lee, L. Li, D. Rupel, A. Zelevinsky, Greedy bases in rank 2 quantum cluster algebras, Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2014, vol.111, no.27, 9712--9716.

13. K. Lee, L. Li, A. Zelevinsky, Positivity and tameness in rank 2 cluster algebras, J. Algebraic Combin. 40 (2014), no. 3, 823--840.

12. K. Lee, L. Li, N. Loehr, Combinatorics of certain higher q,t-Catalan polynomials: chains, joint symmetry, and the Garsia-Haiman formula, Journal of Algebraic Combinatorics 39 (2014), no. 4, 749--781.

11. K. Lee, L. Li, On natural maps from strata of quiver Grassmannians to ordinary Grassmannians, Contemporary Mathematics, volume 592, 2013, 199--214.

10. K. Lee, L. Li, A. Zelevinsky, Greedy elements in rank 2 cluster algebras, Selecta Mathematica. New Series, 20 (2014), no. 1, 57--82.

9. K. Lee, L. Li, N. Loehr, Limits of Modified Higher (q,t)-Catalan Numbers , Electronic Journal of Combinatorics 20(3) (2013), #P4.

8. A. Yong, L. Li, Kazhdan-Lusztig polynomials and drift configurations, Algebra Number Theory 5 (2011), no. 5, 595--626.

7. A. Yong, L. Li, Some degenerations of Kazhdan-Lusztig ideals and multiplicities of Schubert varieties , Advances in Mathematics 229 (2012), no. 1, 633--667.

6. K. Lee, L. Li, $q,t$-Catalan numbers and generators for the radical ideal defining the diagonal locus of $(\mathbb{C}^2)^n$, Electronic Journal of Combinatorics 18 (2011), no. 1.

5. K. Lee, L. Li, On the diagonal ideal of $(\mathbb{C}^2)^n$ and $q,t$-Catalan numbers, DMTCS Proceedings, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), 881--888.

4. W. Hu, L. Li, Lawson homology, morphic cohomology and Chow motives, Mathematische Nachrichten, Volume 284, Issue 8-9, pages 1024--1047, June 2011.

3. L. Li, Chow Motive of Fulton-MacPherson configuration spaces and wonderful compactifications, Michigan Mathematical Journal 58 (2009), no. 2, 565--598.

2. L. Li, Wonderful compactifications of arrangements of subvarieties , Michigan Mathematical Journal 58 (2009), no. 2, 535--563.

1. L. Li, W. Hu, The Lawson homology for Fulton-MacPherson configuration spaces, Algebraic & Geometric Topology 9 (2009) 455--471. (Note that the arXiv version has a slightly different title.)

** Others**

N. Hao, L. Li, Higher cohomology of the pluricanonical bundle is not deformation invariant.

L. Li, Chow Motive of Fulton-MacPherson configuration spaces and wonderful compactifications , Ph.D. Thesis.