Weighted heights and moduli space of Abelian covers

T. Shaska

Oakland University

November 12, 2019
Weighted greatest common divisors
 Weighted greatest common divisors
 Absolute weighted greatest common divisor
 Complexity of computing the weighted greatest common divisor
 Weighted greatest common divisor over general rings

Weighted projective spaces
 Abelian Orbifolds
 Weight projective spaces as Abelian orbifolds

Heights on weighted projective varieties
 Heights for projective varieties
 Local heights on projective varieties
 Global heights on projective varieties
 Weil heights on projective varieties
 Heights on weighted projective spaces
 Local heights on weighted projective varieties
 Global heights on weighted projective varieties

Applications to superelliptic curves
 Binary forms
 Integral binary forms with smallest moduli height
 Weierstrass equations of superelliptic curves with minimal moduli height, Neron models

Weighted greatest common divisors as heights for blowups
 Generalized greatest common divisors
 Generalized weighted greatest common divisors
 Generalized weighted greatest common divisors
Weighted greatest common divisors I

Let $x = (x_0, \ldots, x_n) \in \mathbb{Z}^{n+1}$ be a tuple of integers, not all equal to zero. Their greatest common divisor, denoted by $\gcd(x_0, \ldots, x_n)$, is defined as the largest integer d such that $d | x_i$, for all $i = 0, \ldots, n$.

The concept of the **weighted greatest common divisor** of a tuple for the ring of integers \mathbb{Z} was defined in [13]. Let q_0, \ldots, q_n be positive integers. A set of weights is called the ordered tuple

$$w = (q_0, \ldots, q_n).$$

Denote by $r = \gcd(q_0, \ldots, q_n)$ the greatest common divisor of q_0, \ldots, q_n. A **weighted integer tuple** is a tuple $x = (x_0, \ldots, x_n) \in \mathbb{Z}^{n+1}$ such that to each coordinate x_i is assigned the weight q_i. We multiply weighted tuples by scalars $\lambda \in \mathbb{Q}$ via

$$\lambda \star (x_0, \ldots, x_n) = (\lambda^{q_0} x_0, \ldots, \lambda^{q_n} x_n)$$

For an ordered tuple of integers $x = (x_0, \ldots, x_n) \in \mathbb{Z}^{n+1}$, whose coordinates are not all zero, the **weighted greatest common divisor with respect to the set of weights** w is the largest integer d such that

$$d^{q_i} | x_i, \text{ for all } i = 0, \ldots, n.$$

The first natural question arising from this definition is to know if such integer d does exist for any tuple $x = (x_0, \ldots, x_n) \in \mathbb{Z}^{n+1}$. Clearly, it does exist because $x_i \leq d^{q_i}$ for all $i = 0, \ldots, n$ and the largest integer is unique.

We will denote by $w\gcd(x_0, \ldots, x_n) = w\gcd(x)$.
Weighted greatest common divisors II

Given integer a and non-zero integer b, the integer part of the real number $\frac{a}{b}$ is denote by $\left\lfloor \frac{a}{b} \right\rfloor$, that is, it is the unique integer satisfying:

$$a = \left\lfloor \frac{a}{b} \right\rfloor b + r, \quad 0 \leq r < b.$$

The next result provides an algorithm to compute the weighted greatest common divisor.

Proposition

For a weighted integer tuple $\mathbf{x} = (x_0, \ldots, x_n)$ with weights $\mathbf{w} = (q_0, \ldots, q_n)$ let the factorization of the integers x_i, $(i = 0, \ldots, n)$ into primes:

$$x_i = \prod_{j=1}^{t} p_j^{\alpha_{j,i}}, \quad \alpha_{j,i} \geq 0, \quad j = 1, \ldots, t$$

Then, the weighted greatest common divisor $d = \text{wgcd}(\mathbf{x})$ is given by

$$d = \prod_{j=1}^{t} p_j^{\alpha_j} \quad (1)$$

where,

$$\alpha_j = \min \left\{ \left\lfloor \frac{\alpha_{j,i}}{q_i} \right\rfloor, \quad i = 0, \ldots, n \right\} \text{ and } j = 1, \ldots, t. \quad (2)$$

Next we illustrate the method by a toy example:
Example

Consider the set of weights $w = (3, 2)$ and the tuple

$$x = (1440, 700) = (2^5 \cdot 3^2 \cdot 5 \cdot 7^0, 2^2 \cdot 3^0 \cdot 5^2 \cdot 7) \in \mathbb{Z}^2.$$

Then, $\text{wgcd}(x) = d = 2^{\alpha_1} \cdot 3^{\alpha_2} \cdot 5^{\alpha_3} \cdot 7^{\alpha_4}$, where

$$\alpha_1 = \min \left\{ \left\lfloor \frac{5}{3} \right\rfloor, \left\lfloor \frac{2}{2} \right\rfloor \right\} = 1, \quad \alpha_2 = \min \left\{ \left\lfloor \frac{2}{3} \right\rfloor, \left\lfloor \frac{0}{2} \right\rfloor \right\} = 0,$$

$$\alpha_3 = \min \left\{ \left\lfloor \frac{1}{3} \right\rfloor, \left\lfloor \frac{0}{2} \right\rfloor \right\} = 0, \quad \alpha_4 = \min \left\{ \left\lfloor \frac{0}{3} \right\rfloor, \left\lfloor \frac{1}{2} \right\rfloor \right\} = 0.$$

Then $d = 2$.

\[\square\]

An integer tuple $x = (x_0, \ldots, x_n) \in \mathbb{Z}^{n+1}$ such that its weighted gcd is $\text{wgcd}(x) = 1$ is called normalized.
The **absolute weighted greatest common divisor** of \(x = (x_0, \ldots, x_n) \) with respect to \(w \) is the largest **real number** \(d \) such that
\[
d^{q_i} \in \mathbb{Z} \quad \text{and} \quad d^{q_i} \mid x_i, \quad \text{for all } i = 0, \ldots n.
\]
Again, the natural question is to know if such real number \(d \) does exist for any tuple \(x \).

Proposition

For a given \(x = (x_0, \ldots, x_n) \) with \(w = (w_0, \ldots, w_n) \) let the factorization of \(x_i \) be
\[
x_i = \prod_{j=1}^{t} p_j^{\alpha_{j,i}} , \quad \alpha_{j,i} \geq 0, \quad j = 1, \ldots, t
\]
Then,
\[
\overline{\text{wgcd}}(x) = \left(\prod_{j=1}^{t} p_j^{\alpha_j} \right)^{\frac{1}{q}}
\]
where, \(q = \gcd(q_0, \ldots, q_n) \), \(q_i = q \cdot \bar{q}_i \) and
\[
\alpha_j = \min \left\{ \left\lfloor \frac{\alpha_{j,i}}{q_i} \right\rfloor, \quad i = 0, \ldots, n \right\} \quad \text{and} \quad j = 1, \ldots, t.
\]
Absolute weighted greatest common divisor II

Example

Consider the set of weights \(w = (6, 8) \) and the tuple

\[
x = (2^{15} \cdot 5^{12}, 2^{26} \cdot 5^{13}) \in \mathbb{Z}^2.
\]

Then \(q = \gcd(6, 8) = 2 \), \(p_1 = 2 \), \(p_2 = 5 \), \(t = 2 \) and \(\bar{q}_1 = 3 \), \(\bar{q}_2 = 4 \). Then, \(\overline{\text{wgcd}}(x) = d = (2^{\alpha_1} \cdot 5^{\alpha_2})^{\frac{1}{2}} \), where

\[
\alpha_1 = \min \left\{ \left\lfloor \frac{15}{3} \right\rfloor, \left\lfloor \frac{26}{4} \right\rfloor \right\} = 5, \quad \alpha_2 = \min \left\{ \left\lfloor \frac{12}{3} \right\rfloor, \left\lfloor \frac{13}{4} \right\rfloor \right\} = 3.
\]

Hence \(d = 2^{\frac{5}{2}} \cdot 5^{\frac{3}{2}} = \sqrt{2^5 \cdot 5^3} \). On the other hand, \(\text{wgcd}(x) = 2^2 \cdot 5 \). As expected, \(\text{wgcd}(x) \leq \overline{\text{wgcd}}(x) \).

The next example comes from the theory of invariants of binary sextics.

Example

Consider the set of weights \(w = (2, 4, 6, 10) \) and a tuple

\[
x = (3 \cdot 5^2, 3^2 \cdot 5^4, 3^3 \cdot 5^6, 3^5 \cdot 5^{10}) \in \mathbb{Z}^4.
\]

Then, \(\text{wgcd}(x) = 5 \) and \(\overline{\text{wgcd}}(x) = 5 \cdot \sqrt{3} \).

An integer tuple \(x \) with \(\overline{\text{wgcd}}(x) = 1 \) is called absolutely normalized. We summarize in the following lemma.
Absolute weighted greatest common divisor III

Lemma

For any weighted integral tuple \(\mathbf{x} = (x_0, \ldots, x_n) \in \mathbb{Z}^{n+1} \) such that \(w(x_i) = q_i, i = 0, \ldots, n \), the tuple \(\mathbf{y} = \frac{1}{\text{wgcd} \mathbf{x}} \star \mathbf{x} \), is integral and normalized. Moreover, the tuple \(\tilde{\mathbf{y}} = \frac{1}{\text{wgcd} \mathbf{x}} \star \mathbf{x} \), is also integral and absolutely normalized.

Normalized tuples are unique up to a multiplication of \(q \)-root of unity, where \(q = \gcd(q_0, \ldots, q_n) \).

It is worth noting that a normalized tuple is a tuple with "smallest" integer coordinates (up to multiplication by a unit). We will explore this idea of the "smallest coordinates" in the coming sections.

There are a few natural questions that arise with the weighted greatest common divisor of a tuple of integers. We briefly mention the two main ones:

Problem 1: The greatest common divisor can be computed in polynomial time using the Euclidean algorithm. Determine the fastest way to compute the weighted greatest common divisor and the absolute weighted greatest common divisor.

Problem 2: The greatest common divisor is uniquely determined for unique factorization domains. Define the concept of the weighted greatest common divisor in terms of ring theory and determine the largest class of rings where it is uniquely defined (up to multiplication by a unit).
Complexity of computing the weighted greatest common divisor

Prop. 1 and Prop. 2 provide a method to compute $\text{wgcd}(x)$ and $\overline{\text{gcd}}(x)$. In both, integer factorization is involved.

There are several indications that we can not avoid factoring. For instance, we have that $\text{wgcd}(0, \ldots, 0, x_n)$ is $\text{wgcd}(x_n)$, then we are looking for the largest factor d of x_n such that d^{q_n} divides x_n.

Alternatively, we can factor only an integer, instead of $n + 1$, and then recombining factors in an appropriate and clever way gives us the following.

Lemma

Let $g = \gcd(x_0, \ldots, x_n)$ and $g = \prod_{i=1}^{r} p_i^{s_i}$ its prime factorization.

1. For $i = 1, \ldots, r$, let

$$\beta_i = \min \left\{ \left\lfloor \frac{s_i}{q_j} \right\rfloor : j = 0, \ldots, n \right\}.$$

Then, $\text{wgcd}(x) = \prod_{i=1}^{r} p_i^{\alpha_i}$, where α_i are the largest integers such that d^{q_i} divides x_i and $\alpha_i \leq \beta_i$.

2. Let $q = \gcd(q_0, \ldots, q_n)$, $q_j = q \cdot \overline{q}_j$, $j = 0, \ldots, n$ and for $i = 1, \ldots, r$ let

$$\beta_i = \min \left\{ \left\lfloor \frac{s_i}{\overline{q}_j} \right\rfloor, j = 0, \ldots, n \right\}.$$

Then, $\overline{\text{gcd}}(x) = \left(\prod_{i=1}^{r} p_i^{\alpha_i} \right)^{\frac{1}{q}}$, where α_i are the largest integers such that d^{q_i} divides x_i and $\alpha_i \leq \beta_i$.

Weighted greatest common divisor over general rings

Let R be a commutative ring with identity. Consider a tuple $x = (x_0, \ldots, x_n) \in R^{n+1}$. The weighted greatest common divisor ideal is defined as

$$ \mathfrak{J}(x) = \bigcap_{p} (p^{q_i}) \supset (x_i) $$

over all primes p in R. If R is a PID then the $wgcd(x)$ is the generator of the principal ideal $\mathfrak{J}(x)$.

In general, for R a unique factorization domain, for any point $x \in R^n$ we let $r = \gcd(x_0, \ldots, x_n)$. Factor r as a product of primes, say $r = u \cdot \prod_{i=1}^{s} p_i$, where u is a unit and p_1, \ldots, p_s are primes. Then the weighted gcd $wgcd(x)$ is defined as

$$ wgcd(x) = \prod_{i=1}^{s} p^{q_i} $$

Thus, $wgcd(x)$ is defined up to multiplication by a unit. The absolute weighted greatest common divisor ideal is defined as

$$ \bar{\mathfrak{J}}(x) = \bigcap_{p} \left(p^{q_i} \right) \supset (x_i) $$

over all primes p in R. The above definitions can be generalized to GCD domains. An integral domain R is called a GCD domain if any two elements of R have a greatest common divisor; see [10] for more details.
An orbifold of dimension n is a complex analytic space which admits an open covering $\{U_i\}$, such that U_i is analytically isomorphic to B_i/G_i, where $B_i \subset \mathbb{C}^i$ is an open ball and G_i a finite subgroup of $GL_n(\mathbb{C})$. We will be interested in Abelian orbifolds where the quotient spaces B_i/G_i are given by finite Abelian groups.

Let $d_1, \ldots, d_r \in \mathbb{Z}$ and

$$d := (d_1, \ldots, d_r).$$

Denote by $\mu_d = \mu_{d_1} \times \cdots \mu_{d_r}$ the finite Abelian group written as a product of finite cyclic groups, where each μ_{d_i} is the cyclic group of d_i-th roots of unity in \mathbb{C}.

Let ξ_{d_i} a primitive d_i-th root of unity and $\xi_d := (\xi_{d_1}, \ldots, \xi_{d_r})$ and $A := (a_{i,j})_{i,j} \in Mat_{r \times n}(\mathbb{Z})$. We have a group action

$$\mu_d \times \mathbb{C}^n \to \mathbb{C}^n$$

$$(\xi_{d_1}, \ldots, \xi_{d_r}), (x_1, \ldots, x_n)) \to \left(\xi_{d_1}^{a_{11}} \cdots \xi_{d_r}^{a_{1n}} x_1, \ldots, \xi_{d_1}^{a_{r1}} \cdots \xi_{d_r}^{a_{rn}} x_n\right)$$

The set of all orbits of this action is called the quotient space of type (d, A) and denoted by $X(d, A)$.

Lemma

For any finite Abelian subgroup $G < GL_n(\mathbb{C})$, the space \mathbb{C}^n/G is isomorphic to some quotient space of type $X(d, A)$. Moreover, the space $X(d, A)$ can always be represented by some upper triangular matrix $A \in Mat_{(n-1) \times n}(\mathbb{Z})$.

We will be interested in some very special orbifolds, namely weighted projective spaces.
Weight projective spaces I

Let k be a field of characteristic zero and $w = (q_0, \ldots, q_n) \in \mathbb{Z}^{n+1}$ a fixed tuple of positive integers called weights. Consider the action of $k^* = k \setminus \{0\}$ on $\mathbb{A}^{n+1}(k)$ as follows

$$\lambda \star (x_0, \ldots, x_n) = (\lambda^{q_0} x_0, \ldots, \lambda^{q_n} x_n)$$

for $\lambda \in k^*$.

The quotient of this action is called a **weighted projective space** and denoted by $\mathbb{P}^n_{(q_0, \ldots, q_n)}(K)$. It is the projective variety $\text{Proj} (k[x_0, \ldots, x_n])$ associated to the graded ring $k[x_0, \ldots, x_n]$ where the variable x_i has degree q_i for $i = 0, \ldots, n$.

We denote greatest common divisor of q_0, \ldots, q_n by $\gcd(q_0, \ldots, q_n)$. The space \mathbb{P}^n_w is called **well-formed** if

$$\gcd(q_0, \ldots, \hat{q}_i, \ldots, q_n) = 1, \text{ for each } i = 0, \ldots, n.$$

We will denote a point $p \in \mathbb{P}^n_w(K)$ by $p = [x_0 : x_1 : \cdots : x_n]$. A common reference for weighted projective spaces is [5].
Weighted heights
Heights on weighted projective varieties I

First let's review heights on projective spaces; see [3], [9]

Let \(k \) be an algebraic number field, \([k : \mathbb{Q}] = n\), \(\mathcal{O}_k \) the ring of integers of \(k \), \(M_k \) the complete set of absolute values of \(k \), \(M_k^0 \) the set of all non-archimedian places in \(M_k \), and \(M_k^\infty \) the set of all archimedian places.

For \(v \in M_k \), the **local degree** at \(v \) is \(n_v := [k_v : \mathbb{Q}_v] \), where \(k_v, \mathbb{Q}_v \) are the completions with respect to \(v \). Let \(L/k \) be an extension of number fields, and let \(v \in M_k \) be an absolute value on \(k \). Then

\[
\sum_{w \in M_L, w|v} [L_w : k_v] = [L : k] \quad \text{and} \quad \prod_{v \in M_k} |x|_{nu} = 1
\]

are known as the **degree formula** and the **product formula** (for \(x \in k^* \)).

For a place \(\nu \in M_k \), the corresponding absolute value is denoted by \(| \cdot |_\nu \), normalized with respect to \(k \) such that the product formula holds. The Weil height is

\[
H(x) = \prod_{\nu} \max\{1, |x|_\nu\}.
\]

For a point \(x \in k^{n+1} \) and a place \(\nu \in M_k \) we define \(|x|_\nu = \max\{|x_i|_\nu\}_{i=0}^n \). For \(x = [x_0 : \cdots : x_n] \in \mathbb{P}^n(k) \) we define the **height** of \(x \) defined as

\[
H(x) = \prod_{\nu} \max\{|x_0|_\nu, \ldots, |x_n|_\nu\} = \prod_{\nu} |x|_\nu
\]

The height of \(x \) is well defined.
Local heights on projective varieties

Let k be a field and $| \cdot |$ a fixed absolute value on k. Let \mathcal{X} be a projective variety over k, which we assume that is irreducible.

Let D be a Cartier divisor on \mathcal{X} with associated bundle $O(D)$ and meromorphic section s_D. Then there are line bundles on \mathcal{X} such that

$$O(D) \cong L \otimes M^{-1}.$$

Choose global sections s_0, \ldots, s_n of L and t_0, \ldots, t_m of M. The data

$$\mathcal{D} := (s_D; L, s; M, t),$$

where $(s) := (s_0, \ldots, s_n)$ and $t := (t_0, \ldots, t_m)$ is called a presentation of the Cartier divisor D.

For $P \in \mathcal{X} \setminus \text{supp}(D)$, we define

$$\lambda_D(P) := \max_k \min_l \log \left| (s_k \otimes (t_l \otimes s_D)^{-1}) (P) \right|$$

Notice that $(s_k \otimes (t_l \otimes s_D)^{-1})$ is a rational function on \mathcal{X}. We call $\lambda_D(P)$ the local height of P relative to the presentation \mathcal{D} of D and by abusing notation sometimes simply relative to D.
Consider now the case when k is a number field. As above X is an irreducible projective variety defined over k and D a Cartier divisor on X with presentation as above. Let F be a number field with $k \subset F \subset \overline{k}$ and $P \in X(F) \setminus \text{supp}(D)$. For $\nu \in M_F$ we define the local height as

$$\lambda_D(P, \nu) := \max_k \min_l \log \left| (s_k \otimes (t_l \otimes s_D)^{-1}) (P) \right|_\nu$$

For $P \in X$ there exists s_j and t_l such that $s_j(P) \neq 0$ and $t_l(P) \neq 0$. So we can find a meromorphic function of $O(D)$ such that P is not contained in the support of the Cartier divisor $D(s)$. Then $D(s) = (s; L, s; M, t)$ is a presentation of $D(s)$ and

$$\lambda_{D(s)} = \lambda_D + \lambda_f,$$

where f is the rational function $s \otimes s_D$.

If F is a finite extension of k such that $P \in X(F)$, the local height $\lambda_{D(s)}(P, \nu)$ is finite for any $\nu \in M_L$, because $P \notin \text{supp}(D(s))$. Hence, we define the global height of P relative to λ_D as

$$h(P) := \sum_{\nu \in M_F} \lambda_{D(s)}(P, \nu).$$

Proposition

The global height h is independent of the choices of F and of the section s.

See [3, Prop. 2.3.4].
Let \mathcal{X} be a projective variety over \overline{k} and

$$\varphi : \mathcal{X} \to \mathbb{P}^n(\overline{k}),$$

a morphism over \overline{k}. The **Weil height** of $P \in \mathcal{X}(\overline{k})$, relative to φ is defined as the

$$h_\varphi(P) := H(\varphi(P)),$$

where H is the usual height on $\mathbb{P}^n(\overline{k})$. Every Weil height may be viewed as a global height. Conversely, we can write any global height as a difference of two Weil height.
Weighted Heights I

Let \(w = (q_0, \ldots, q_n) \) be a set of heights and \(\mathbb{WP}^n_w(k) \) the weighted projective space over a number field \(k \). Let \(p \in \mathbb{WP}^n(k) \) a point such that \(p = [x_0, \ldots, x_n] \). We follow the definitions of [2] to define the weighted height in \(\mathbb{WP}^n_w(k) \).

The \textit{weighted multiplicative height} of \(p \) is defined as

\[
\mathcal{h}(p) := \prod_{v \in M_k} \max\left\{ \frac{n_v}{q_0}, \ldots, \frac{n_v}{q_n} \right\}
\]

and the \textit{logarithmic weighted height} as

\[
\log \mathcal{h}(p) := \log \mathcal{h}_k(p) = \sum_{v \in M_k} \max_{0 \leq j \leq n} \left\{ \frac{n_v}{q_j} \cdot \log |x_j|_v \right\}.
\]

Then we have the following.

\textbf{Proposition}

\textit{The following are true:}

i) \(h_k(p) \) does not depend on the choice of coordinates of \(p \).

ii) \(h_k(p) \geq 1 \).

Next we will interpret the weighted height on weighted varieties in an analogue way to Weil height on projective varieties.
Let k be a field and $|\cdot|$ a fixed absolute value on \bar{k}. Let \mathcal{X} be a weighted projective variety over k, which we assume that is irreducible.

Let D be a Cartier divisor on \mathcal{X} with associated bundle $O(D)$ and meromorphic section s_D. Then there are line bundles on \mathcal{X} such that

$$O(D) \cong L \otimes M^{-1}.$$

Choose global sections s_0, \ldots, s_n of L and t_0, \ldots, t_m of M. The data

$$\mathcal{D} := (s_D; L, s; M, t),$$

where $(s) := (s_0, \ldots, s_n)$ and $t := (t_0, \ldots, t_m)$ is called a presentation of the Cartier divisor D.

For $P \in \mathcal{X} \setminus \text{supp}(D)$, we define

$$\lambda_D(P) := \max_r \min_s \log |(s_r \otimes (t_s \otimes s_D)^{-1}) (P)|$$

Notice that $(s_k \otimes (t_l \otimes s_D)^{-1})$ is a rational function on \mathcal{X}. We call $\lambda_D(P)$ the local height of P relative to the presentation \mathcal{D} of D and by abusing notation sometimes simply relative to D.

Let F be a number field such that $k \subset F \subset \bar{k}$ and let $p \in \mathcal{X}(F) \setminus \text{supp}(D)$. For $\nu \in M_F$ we define the local height

$$\lambda_D(p, \nu) := \max_r \min_s \log |(s_r \otimes (t_s \otimes s_D)^{-1}) (P)|_{\nu}$$
Let $p \in \mathbb{Q}$ be the prime such that the restriction of ν to \mathbb{Q} is equal to $|\cdot|_p$. Let $|\cdot|_\mu$ be an absolute value on \overline{k}, such that its restriction to k is equivalent to $|\cdot|_\nu$. Then,

$$\lambda_D(p, \nu) = \frac{[F_\nu : \mathbb{Q}_p]}{[F : \mathbb{Q}]} \lambda_D(p, \mu),$$

where $\lambda_D(p, \mu)$ is the local height relative to the absolute value $|\cdot|_\mu$. So the theory of local heights over \overline{k} can be applied to any norm on k.

The hyperplane \(\{x_i = 0\} \) in $\mathbb{WP}_n^w(k)$ has the presentation

$$D = (x_i : \mathcal{O}_{\mathbb{WP}_n^w}(1), x_0, \ldots, x_n; \mathcal{O}_{\mathbb{WP}_n^w}, 1)$$

For a point $p \in \mathbb{WP}_n^w(F)$ with $x_i(p) \neq 0$ and $\nu \in M_F$ the corresponding local weighted height is

$$\lambda_D(p, \nu) := \max \left\{ \log |x_0|_\nu^{\frac{n\nu}{q_0}}, \ldots, \log |x_n|_\nu^{\frac{n\nu}{q_n}} \right\}$$

and the product formula becomes

$$h(p) = \sum_{\nu \in M_F} \lambda_D(p, \nu).$$

Proposition

The height defined in Eq. (5) is a local height.
Let k be a number field, \mathcal{X} is an irreducible projective variety defined over k, and D a Cartier divisor on \mathcal{X} with presentation as above. Let F be a number field with $k \subset F \subset \bar{k}$ and $P \in \mathcal{X}(F) \setminus \text{supp}(D)$. For $\nu \in M_F$ we define the local height as

$$\lambda_D(P, \nu) := \max_k \min_l \log \left| (s_k \otimes (t_l \otimes s_D)^{-1})(P) \right|_\nu$$

For $P \in \mathcal{X}$ there exists s_j and t_l such that $s_j(P) \neq 0$ and $t_l(P) \neq 0$. So we can find a meromorphic function of $O(D)$ such that P is not contained in the support of the Cartier divisor $D(s)$. Then $D(s) = (s; L, s; M, t)$ is a presentation of $D(s)$ and

$$\lambda_{D(s)} = \lambda_D + \lambda_f,$$

where f is the rational function $s \otimes s_D$.

If F is a finite extension of k such that $P \in \mathcal{X}(F)$, the local height $\lambda_{D(s)}(P, \nu)$ is finite for any $\nu \in M_L$, because $P \notin \text{supp}(D(s))$. Hence, we define the global height of P relative to λ_D as

$$h(P) := \sum_{\nu \in M_F} \lambda_{D(s)}(P, \nu).$$

Proposition

The global height h is independent of the choices of F and of the section s.
Weighted Heights II
Global heights on weighted projective varieties

Definition
The **weighted multiplicative height** of \(p \) as

\[
\mathcal{h}_k(p) := \prod_{v \in M_k} \max \left\{ \left| x_0 \right|_{v}^{\frac{n_v}{q_0}}, \ldots, \left| x_n \right|_{v}^{\frac{n_v}{q_n}} \right\}
\] (6)

The **logarithmic height** of the point \(p \) is defined as follows

\[
\mathcal{h}'_k(p) := \log \mathcal{h}_k(p) = \sum_{v \in M_k} \max_{0 \leq j \leq n} \left\{ \frac{n_v}{q_j} \cdot \log \left| x_j \right|_v \right\}.
\] (7)

Proposition
The height defined in Eq. (6) is a global height.

Let \(X \) be a weighted projective variety over \(\bar{k} \) and \(\varphi : X \to \mathbb{WP}^n(\bar{k}) \) a morphism. The **weighted Weil height** of \(p \in X(\bar{k}) \), relative to \(\varphi \), is defined as

\[
wh_{\varphi}(p) := \mathcal{h}(\varphi(p)).
\]

Proposition
Every weighted Weil height can be as a global height. Moreover, every global height can be written as a difference of two weighted Weil heights.
Applications to superelliptic curves
Let X_g be a superelliptic curve of genus $g \geq 2$ with affine equation
\[
z^m y^{d-m} = f(x, y) = a_d x^d + a_{d-1} x^{d-1} y + \cdots + a_1 x y^{d-1} + a_0 y^d
\] defined over an algebraic number field k; see [8].

Isomorphism classes of such curves are classified by the invariants of binary forms, since they are invariants under any coordinate change.

Let $k[x, y]$ be the polynomial ring in two variables and V_d the $(d + 1)$-dimensional subspace of $k[x, y]$ consisting of homogeneous polynomials $f(x, y)$ of degree d. Elements in V_d are called binary forms of degree d.

$GL_2(k)$ acts as a group of automorphisms on $k[x, y]$ as follows:
\[
M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(k), \quad \text{then} \quad M \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}
\] (9)

Denote by f_M the binary form $f_M(x, y) := f(ax + by, cx + dy)$. It is well known that $SL_2(k)$ leaves a bilinear form (unique up to scalar multiples) on V_d invariant.

Consider a_0, a_1, \ldots, a_d as parameters (coordinate functions on V_d). Then the coordinate ring of V_d can be identified with $k[a_0, \ldots, a_d]$. For $I \in k[a_0, \ldots, a_d]$ and $M \in GL_2(k)$, define $I^M \in k[a_0, \ldots, a_d]$ as follows
\[
I^M(f) := I(f^M)
\] (10)

for all $f \in V_d$. Then $I^{MN} = (I^M)^N$ and Eq. (10) defines an action of $GL_2(k)$ on $k[a_0, \ldots, a_d]$. A homogeneous polynomial $I \in k[a_0, \ldots, a_d, x, y]$ is called a covariant of index s if $I^M(f) = \delta^s I(f)$, where $\delta = \det(M)$. The
homogeneous degree in a_0, \ldots, a_d is called the degree of I, and the homogeneous degree in X, Z is called the order of I. A covariant of order zero is called invariant. An invariant is a $SL_2(k)$-invariant on V_d.

One of the most important results of the classical invariants theory is Hilbert’s theorem that says that the ring of invariants of binary forms is finitely generated. We denote by \mathcal{R}_d the ring of invariants of the binary forms of degree d.

Proposition

i) \mathcal{R}_d is finitely generated

ii) \mathcal{R}_d is a graded ring

Let us see what happens to the invariants when we change the coordinates, in other words when we act on the binary form $g(x, y)$ via $M \in GL_2(k)$. Let I_0, \ldots, I_n be the generators of \mathcal{R}_d with degrees q_0, \ldots, q_n respectively. We denote the tuple of invariants by $\mathcal{I} := (I_0, \ldots, I_n)$. The following result is fundamental to our approach.

Proposition

For any two binary formal f and g, $f = g^M$, $M \in GL_2(k)$, if and only if

$$(I_0(f), \ldots, I_i(f), \ldots, I_n(f)) = (\lambda^{q_0} I_0(g), \ldots, \lambda^{q_i} I_i(g), \ldots, \lambda^{q_n} I_n(g),),$$

where $\lambda = (\det M)^{\frac{d}{2}}$.

Next we give a brief description for cases of binary sextics and binary octavics, not only because of their significance in cryptography, but also to show that such approach is concrete and constructive.
Binary sextics

If $\deg f = 6$ binary forms are called *binary sextics* and their invariants are J_2, J_4, J_6, J_{10}, which are called *arithmetic invariants*.

Lemma

J_{2i} are homogeneous polynomials in $k[a_0, \ldots, a_6]$ of degree $2i$, for $i = 1, 2, 3, 5$. Moreover, they generate R_6.

For a genus two curve C with projective equation $z^2y^4 = f(x, y)$ we denote by $J_{2i}(C) := J_{2i}(f)$, for $i = 1, 2, 3, 5$.

Lemma

Two genus 2 curves C and C' are isomorphic over \bar{k} if and only if there exists an $\lambda \neq 0$ such that

$$J_{2i}(C) = \lambda^{2i} \cdot J_{2i}(C'), \quad \text{for} \quad i = 1, 2, 3, 5.$$

Moreover, if the transformation between binary sextics is given through a matrix M, then $\lambda = (\det M)^3$.

Hence, to study isomorphism classes of genus 2 curves it is equivalent as considering tuples of invariants (J_2, J_4, J_6, J_{10}).
Binary octavics

If \(\deg f = 8 \), then \(f(x, y) \) is called a binary octavic. Invariants of \(V_8 \) are denoted by \(J_2, J_3, \ldots, J_8 \). They are primitive homogeneous polynomials \(J_i \in k[a_0, \ldots, a_8] \) of degree \(i \), for \(i = 2, \ldots, 10 \). For any \(M = \in GL_2(k) \), we have

\[
J_i(f^M) = (\det M)^{4i} J_i(f),
\]

for \(i = 2, \ldots, 10 \). \(R_8 \) is finitely generated as a module over \(k[J_2, \ldots, J_7, J_8] \). Moreover, invariants \(J_2, \ldots, J_8 \) satisfy the following equation

\[
J_5^8 + \frac{I_8}{3^4 \cdot 5^3} J_4^8 + 2 \cdot \frac{I_{16}}{3^8 \cdot 5^6} J_3^8 + \frac{I_{24}}{2 \cdot 3^{12} \cdot 5^6} J_2^8 + \frac{I_{32}}{3^{16} \cdot 5^{10}} J_8 + \frac{I_{40}}{2^2 \cdot 3^{20} \cdot 5^{12}} = 0, \tag{11}
\]

where \(I_{8j} \) are invariants of degree \(8j \) for \(j = 1, \ldots, 5 \).
Hence, the isomorphism class of a binary octavic corresponds to a tuple of invariants \((J_2, \ldots, J_7, J_8)\) which satisfy the equation above. In terms of genus 3 hyperelliptic curves we have the following.

Lemma

Two genus 3 hyperelliptic curves \(C \) and \(C' \) given by equations \(C : z^2 = f(x, y) \) and \(C' : z^2 = g(x, y) \) are isomorphic over \(\bar{k} \) if and only if there exists some \(\lambda \in k \setminus \{0\} \) such that

\[
J_i(C) = \lambda^i \cdot J_i(C'), \text{ for } i = 2, \ldots, 8.
\]

\textbf{Proj } \mathcal{R}_d \text{ as a weighted projective space I}

Since \(I_0, \ldots, I_i, \ldots, I_n \) are homogenous polynomials, then \(\mathcal{R}_d \) is a graded ring. Hence, \(\text{Proj } \mathcal{R}_d \) is a weighted projective space \(\mathbb{WP}_n^w(k) \) for

\[w = (\deg I_0, \deg I_1, \ldots, \deg I_i, \ldots, \deg I_n). \]

\textbf{Lemma}

Let \(I_0, I_1, \ldots, I_n \) be the generators of the ring of invariants \(\mathcal{R}_d \) of degree \(d \) binary forms. A \(k \)-isomorphism class of a binary form \(f \) is determined by the point

\[\mathcal{I}(f) := [I_0(f), I_1(f), \ldots, I_n(f)] \in \mathbb{WP}_n^w(k). \]

Moreover \(f = g^M \) for some \(M \in GL_2(K) \) if and only if \(\mathcal{I}(f) = \lambda \cdot \mathcal{I}(g), \) for \(\lambda = (\det A)^{\frac{d}{2}}. \)

\textbf{Corollary}

Let \(\mathcal{X} \) be a superelliptic curve with equation as in Eq. (8). The \(\bar{k} \)-isomorphism class of \(\mathcal{X} \) is determined by the weighted moduli point \(\mathfrak{p} := [\mathcal{I}(f)] \in \mathbb{WP}_n^w(k). \)

Hence we have the following problem.

\textbf{Problem}

Let \(\mathcal{X} \) be a given superelliptic curve with equation \(z^m = f(x), \deg f = d, \) defined over \(\mathcal{O}_k, \) and with corresponding moduli point \(\mathfrak{p} := [\mathcal{I}(f)] \in \mathbb{WP}_n^w(k). \) Find a representation of \(\mathfrak{p} \in \mathbb{WP}_n^w(k) \) with smallest coordinates.
Integral binary forms with smallest moduli height I

Problem
Determine an equation of the curve \mathcal{X}, say $z^m y^{d-m} = g(x, y)$, defined over \mathcal{O}_k, such that $g(x, y)$ has minimal invariants.

We say that a binary form $f(x, y)$ has a minimal model over k if it is integral (i.e. $f \in \mathcal{O}_k[x, y]$) and $s(I(f))$ is minimal. Let $f \in \mathcal{O}_k$ and $x := I(f) \in \mathbb{W}\mathbb{P}^n_{\mathcal{O}_k}$ its corresponding weighted moduli point. We define the weighted valuation of the tuple $x = (x_0, \ldots, x_n)$ at the prime $p \in \mathcal{O}_k$ as

$$\text{val}_p(x) := \max \left\{ j \mid p^j \text{ divides } x_i^{q_i} \text{ for all } i = 0, \ldots, n \right\},$$

Then we have the following.

Proposition
A binary form $f \in V_d$ is a minimal model over \mathcal{O}_k if for every prime $p \in \mathcal{O}_k$ such that $p \mid \text{wgcd}(I(f))$ the following holds

$$\text{val}_p(I(f)) < \frac{d}{2} q_i$$

for all $i = 0, \ldots, n$. Moreover, for every integral binary form f its minimal model exist.

Notice that it is possible to find a twist of f with "smaller" invariants. In this case the new binary form is not in the same $SL_2(\mathcal{O}_k)$-orbit as f. For example, the transformation

$$ (x, y) \rightarrow \left(\frac{1}{\lambda^d} x, \frac{1}{\lambda^d} y, \right).$$
Integral binary forms with smallest moduli height II

will give us the form with smallest invariants, but not necessarily \(k \)-isomorphic to \(f \).
It is worth noting that for a binary form \(f \) given in its minimal model, the point \(\mathcal{I}(f) \) is not necessarily normalized as in the sense of [2].

Corollary

If \(f(x, y) \in \mathcal{O}_k[x, y] \) is a binary form such that \(\mathcal{I}(f) \in \mathbb{WP}^n_k \) is normalized over \(k \), then \(f \) is a minimal model over \(\mathcal{O}_k \).

Example

Let be given the sextic

\[
f(x, y) = 7776x^6 + 31104x^5y + 40176x^4y^2 + 25056x^3y^3 + 8382x^2y^4 + 1470xy^5 + 107y^6
\]

Notice that the polynomial has content 1, so there is no obvious substitution here to simplify sextic. The moduli point is \(p = [J_2 : J_4 : J_6 : J_{10}] \), where

\[
\begin{align*}
J_2 &= 2^{15} \cdot 3^5, \\
J_4 &= -2^{12} \cdot 3^9 \cdot 101 \cdot 233, \\
J_6 &= 2^{16} \cdot 3^{13} \cdot 29 \cdot 37 \cdot 8837, \\
J_{10} &= 2^{26} \cdot 3^{21} \cdot 11 \cdot 23 \cdot 547 \cdot 1445831
\end{align*}
\]
Recall that the transformation \((x, y) \rightarrow \left(\frac{1}{p}x, y\right)\) will change the representation of the point \(p\) via

\[
\frac{1}{p^3} \times [J_2 : J_4 : J_6 : J_{10}] = \begin{bmatrix} \frac{1}{p^6} J_2 : \frac{1}{p^{12}} J_4 : \frac{1}{p^{18}} J_6 : \frac{1}{p^{30}} J_{10} \end{bmatrix}
\]

So we are looking for prime factors \(p\) such that \(p^6 | J_2, p^{12} | J_4, p^{18} | J_6, \) and \(p^{30} | J_{10}\). Such candidates for \(p\) have to be divisors of \(\text{wgcd}(p) = 2^2 \cdot 3^2\).

Obviously neither \(p = 2\) or \(p = 3\) will work. Thus, \(f(x, y)\) is in its minimal model over \(\mathcal{O}_k\).

Corollary

The transformation of \(f(x, y)\) by the matrix

\[
M = \begin{bmatrix} \varepsilon_d \frac{1}{(\text{wgcd}(I(f)))^\frac{a}{d}} & 0 \\ 0 & \varepsilon_d \frac{1}{(\text{wgcd}(I(f)))^\frac{a}{d}} \end{bmatrix}
\]

where \(\varepsilon_d\) is a \(d\)-primitive root of unity, will always give a minimal set of invariants.
Now we will consider the minimal models of curves over \mathcal{O}_k. Let X be as in Eq. (8) and $p = [\mathcal{I}(f)] \in \mathbb{WP}^n_{\mathfrak{m}}(k)$. Let us assume that for a prime $p \in \mathcal{O}_k$, we have $\nu_p \left(w \gcd(p) \right) = \alpha$. If we use the transformation $x \rightarrow \frac{x}{p^\beta x}$, for $\beta \leq \alpha$, then from Prop. 10 the set of invariants will become

$$\frac{1}{p^{\frac{\alpha}{2}\beta}} \ast \mathcal{I}(f)$$

To ensure that the moduli point p is still with integer coefficients we must pick β such that $p^{\frac{\beta d}{2}}$ divides $p^\nu_p (x_i)$ for $i = 0, \ldots, n$. Hence, we must pick β as the maximum integer such that $\beta \leq \frac{2}{d} \nu_p (x_i)$, for all $i = 0, \ldots, n$. This is the same β as in Prop. 11. The transformation

$$(x, y) \rightarrow \left(\frac{x}{p^\beta}, y \right),$$

has corresponding matrix $M = \begin{bmatrix} \frac{1}{p^\beta} & 0 \\ 0 & 1 \end{bmatrix}$ with $\det M = \frac{1}{p^\beta}$. Hence, from Prop. 10 the moduli point p changes as $p \rightarrow \left(\frac{1}{p^\beta} \right)^{d/2} \ast p$, which is still an integer tuple. We do this for all primes p dividing $w \gcd(p)$. Notice that the new point is not necessarily normalized in $\mathbb{WP}^n_{\mathfrak{m}}(k)$ since β is not necessarily equal to α. This motivates the following definition.
Weierstrass equations with minimal moduli height II

Definition
Let X be a superelliptic curve defined over an integer ring \mathcal{O}_k and $p \in \mathbb{WP}^n_m(\mathcal{O}_k)$ its corresponding weighted moduli point. We say that X has a **minimal model** over \mathcal{O}_k if for every prime $p \in \mathcal{O}_k$ the valuation of the tuple at p

$$\text{val}_p(p) := \max \{ \nu_p(x_i) \text{ for all } i = 0, \ldots, n \},$$

is minimal, where $\nu_p(x_i)$ is the valuation of x_i at the prime p.

Theorem
Minimal models of superelliptic curves exist. An equation $X : z^m y^d - m = f(x, y)$ is a minimal model over \mathcal{O}_k, if for every prime $p \in \mathcal{O}_k$ which divides $p \mid \text{wgcd}(I(f))$, the valuation val_p of $I(f)$ at p satisfies

$$\text{val}_p(I(f)) < \frac{d}{2} q_i, \quad (13)$$

for all $i = 0, \ldots, n$. Moreover, then for $\lambda = \text{wgcd}(I(f))$ with respect the weights $(\left\lfloor \frac{dq_0}{2} \right\rfloor, \ldots, \left\lfloor \frac{dq_n}{2} \right\rfloor)$ the transformation

$$(x, y, z) \rightarrow \left(\frac{x}{\lambda}, y, \lambda \frac{d}{m} z \right)$$

gives the minimal model of X over \mathcal{O}_k. If $m \mid d$ then this isomorphism is defined over k.

Let us see an example from curves of genus 2.
Weierstrass equations with minimal moduli height III

Example
Let \mathcal{X} be a genus 2 curve with equation $z^2 y^4 = f(x, y)$ as in ?? 4. By applying the transformation

$$(x, y, z) \rightarrow \left(\frac{x}{6}, y, 6^3 \cdot z\right)$$

we get the equation

$$z^2 = x^6 + 24x^5 + 186x^4 + 696x^3 + 1397x^2 + 1470x + 642. \quad (14)$$

Computing the moduli point of this curve we get

$$p = [2^{11} \cdot 3 : -2^4 \cdot 3 \cdot 101 \cdot 233 : 2^4 \cdot 3 \cdot 29 \cdot 37 \cdot 8837 : 2^6 \cdot 3 \cdot 11 \cdot 23 \cdot 547 \cdot 1445831],$$

which is obviously normalized in $\mathbb{W}_{WP^3}(\mathbb{Q})$ since $\text{gcd}(p) = 1$. Hence, the Eq. (14) is a minimal model. \hfill \Box

Corollary
There exists a curve \mathcal{X}' given in ?? isomorphic to \mathcal{X} over the field $K := k\left(\frac{\text{gcd}(p)}{d}\right)$ with minimal $SL_2(O_K)$-invariants. Moreover, if $m|d$ then \mathcal{X} and \mathcal{X}' are k-isomorphic.

For hyperelliptic curves: $m = 2$ and $d = 2g + 2$. Hence, \mathcal{X} and \mathcal{X}' would always be isomorphic over k.

Corollary
Given a hyperelliptic curve \mathcal{X} defined over a ring of integers O_k. There exists a curve \mathcal{X}' k-isomorphic to \mathcal{X} with minimal $SL_2(O_K)$-invariants.
Generalized greatest common divisors I

The following setup is taken from [14].

For any two elements \(\alpha, \beta \in \mathcal{O}_k \) the greatest common divisor is defined as

\[
gcd(\alpha, \beta) := \prod_{p \in \mathcal{O}_k} p^{\min\{\nu_p(\alpha), \nu_p(\beta)\}}
\]

The logarithmic greatest common divisor is

\[
\log \gcd(\alpha, \beta) := \sum_{\nu \in M_k^0} \min\{v(\alpha), v(\beta)\}
\]

For a valuation \(\nu \in M_k \), we define the extension of \(\nu \) to \(k \) as

\[
\nu^+: k \rightarrow [0, \infty], \\
\alpha \rightarrow \max\{v(\alpha), 0\}.
\]

The generalized logarithmic greatest common divisor of two elements \(\alpha, \beta \in k \) is defined as

\[
hgcd (\alpha, \beta) := \sum_{\nu \in M_k} \min\{\nu^+(\alpha), \nu^+(\beta)\}.
\]
Notice that ν^+ can be viewed as a height function on $\mathbb{P}^1(k) = k \cup \{\infty\}$, where we set $\nu^+(\infty) = 0$. This leads to the generalized logarithmic greatest common divisor being viewed also as a height function:

$$G_\nu : \mathbb{P}^1(k) \times \mathbb{P}^1(k) \to [0, \infty]$$

$$(\alpha, \beta) \to \min\{\nu^+(\alpha), \nu^+(\beta)\}$$

In view of the above we have

$$\text{hgcd} (\alpha, \beta) = \sum_{\nu \in M_k} G_\nu.$$

In [14] it was given a theoretical interpretation of the function G_ν in terms of blowups.

Theorem (Silverman 2004)

The generalized logarithmic gcd of α and β is equal to the Weil height of (α, β) on a blowup of $(\mathbb{P}^1)^2$ with respect to the exceptional divisor of the blowup.

So we generalize the notion of the greatest common divisor to any variety blowup along an arbitrary subvariety.

Let \mathcal{X}/k be a smooth variety and $\mathcal{Y}/k \subset \mathcal{X}/k$ be a subvariety of codimension $r \geq 2$. Let $\pi : \tilde{\mathcal{X}} \to \mathcal{X}$ be the blowup of \mathcal{X} along \mathcal{Y} and let $\tilde{\mathcal{Y}} = \pi^{-1}(\mathcal{Y})$ be the exceptional divisor of the blowup. For any $P \in \mathcal{X} \setminus \mathcal{Y}$, denote by $\tilde{P} = \pi^{-1}(P) \in \tilde{\mathcal{X}}$. Then,

$$\text{hgcd} (P; \mathcal{Y}) = h_{\tilde{\mathcal{X}}, \tilde{\mathcal{Y}}} (\tilde{P}).$$
Generalized weighted greatest common divisors

Details can be found in [11]. Let \(x = (x_0, \ldots, x_n) \in \mathcal{O}_k^{n+1} \). Then,

\[
wgcd_w(x) = \prod_{p \in \mathcal{O}_k} \min \left\{ \left\lfloor \frac{\nu_p(x_0)}{q_0} \right\rfloor, \ldots, \left\lfloor \frac{\nu_p(x_n)}{q_n} \right\rfloor \right\}
\]

The logarithmic weighted greatest common divisor is

\[
\log wgcd_w(x) = \sum_{\nu \in M_0^k} \min \left\{ \left\lfloor \frac{\nu_p(x_0)}{q_0} \right\rfloor, \ldots, \left\lfloor \frac{\nu_p(x_n)}{q_n} \right\rfloor \right\}
\]

For a valuation \(\nu \in M_k \), we define the extension of \(\nu \) to \(k \) as

\[
\nu^+ : k \rightarrow [0, \infty],
\]

\[
\alpha \rightarrow \max \{ v(\alpha), 0 \}.
\]

Consider now \(x = (x_0, \ldots, x_n) \in k^{n+1} \). The generalized weighted greatest common divisor is defined as

\[
hwgcd_w(x) = \prod_{p \in \mathcal{O}_k} \min \left\{ \left\lfloor \frac{\nu_p^+(x_0)}{q_0} \right\rfloor, \ldots, \left\lfloor \frac{\nu_p^+(x_n)}{q_n} \right\rfloor \right\}
\]
and the logarithmic generalized weighted greatest common divisor is

$$\log \text{hwgcd}_w(x) = \sum_{\nu \in M_k^0} \min \left\{ \left\lceil \frac{\nu_p^+(x_0)}{q_0} \right\rceil, \ldots, \left\lceil \frac{\nu_p^+(x_n)}{q_n} \right\rceil \right\}$$

Now we have

$$T_\nu : \mathbb{P}^n_w(k) \rightarrow [0, \infty]$$

$$(x_0, \ldots, x_n) \rightarrow \min \left\{ \left\lceil \frac{\nu_p^+(x_0)}{q_0} \right\rceil, \ldots, \left\lceil \frac{\nu_p^+(x_n)}{q_n} \right\rceil \right\}$$

Then we have

$$\text{hwgcd}(x) = \sum_{\nu \in M_k} T_\nu(x)$$

Let $\pi : \tilde{X} \rightarrow \mathbb{P}^n_w(k)$ be the blowup of $\mathbb{P}^n_w(k)$ at the point $O = (0, \ldots, 0)$ and let $E := \pi^{-1}(O)$ be the exceptional divisor for this blowup.
Generalized weighted greatest common divisors III

Lemma
Let \(\mathcal{X} \) be a weighted projective variety and \(\mathcal{Y} \subset \mathcal{X} \) a closed subvariety. The blow-up \(\pi : \tilde{\mathcal{X}} \to \mathcal{X} \) of \(\mathcal{Y} \) has the following properties:

i) \(\pi |_{\pi^{-1}(\mathcal{X} \setminus \mathcal{Y})} : \pi^{-1}(\mathcal{X} \setminus \mathcal{Y}) \to \mathcal{X} \setminus \mathcal{Y} \) is an isomorphism.

ii) the exceptional divisor \(E = \pi^{-1}(\mathcal{Y}) \) is an effective Cartier divisor on \(\tilde{\mathcal{X}} \).

Lemma
Let \(\nu \in \mathbb{M}_k \). Then the local weighted height function on \(\tilde{\mathcal{X}} \) for the divisor \(E \), corresponding to \(\nu \), is given by the formula

\[
\lambda_{\tilde{\mathcal{X}},E}(\pi^{-1}(\alpha_0, \ldots, \alpha_n), \nu) = \min \left\{ \left\lfloor \frac{\nu^+(\alpha_0)}{q_0} \right\rfloor, \ldots, \left\lfloor \frac{\nu^+(\alpha_n)}{q_n} \right\rfloor \right\}
\]

for all \((\alpha_0, \ldots, \alpha_n) \in \mathcal{X}(k) \setminus \{(0, \ldots, 0)\} \).

Then we have the following; see [11].

Theorem (Sh-19)
The generalized logarithmic weighted greatest common divisor is equal to the weighted height of \(x \) on a blowup of \(\mathbb{W}P^n_{\mathbb{W}}(k) \) with respect to the exceptional divisor of the blowup. In other words

\[
\log \hwgcd(x) = \sum_{\nu \in \mathbb{M}_k} \lambda_{\tilde{\mathcal{X}},E}(\pi^{-1}(x), \nu) = \lambda_{\tilde{\mathcal{X}},E}(\pi^{-1}(x), \nu)
\]
References

[12] ________ , Weighted greatest common divisors and local heights on wps blown-up at a point, relative to the exceptional divisor, 2019. In progress.

